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Abstract. Computer vision models have seen increased usage in sports,
and reinforcement learning (RL) is famous for beating humans in strate-
gic games such as Chess and Go. In this paper, we are interested in
building upon these advances and examining the game of classic 8-ball
pool. We introduce pix2pockets, a foundation for an RL-assisted pool
coach. Given a single image of a pool table, we first aim to detect the
table and the balls and then propose the optimal shot suggestion. For the
first task, we build a dataset with 195 diverse images where we manually
annotate all balls and table dots, leading to 5748 object segmentation
masks. For the second task, we build a standardized RL environment
that allows easy development and benchmarking of any RL algorithm.
Our object detection model yields an AP50 of 91.2 while our ball loca-
tion pipeline obtains an error of only 0.4 cm. Furthermore, we compare
standard RL algorithms to set a baseline for the shot suggestion task and
we show that all of them fail to pocket all balls without making a foul
move. We also present a simple baseline that achieves a per-shot success
rate of 94.7% and clears a full game in a single turn 30% of the time.

1 Introduction

Artificial intelligence and reinforcement learning (RL) have proven to excel in
complex games, such as Chess [30], Go [29], Starcraft [37], and Minecraft [21].
Apart from board and video games, computer vision models have recently started
playing an important role in sports with several applications in generating sports
analytics [13] and analyzing game strategies and tactics [30,24].

While RL in sports is not as widespread [34,30], table-based sports such
as pool are a natural field for RL. The 8-ball pool variant is a popular game
played worldwide by millions of people. According to Guinness records, the most
downloaded mobile game is the 8-Ball pool game with 800 Million downloads *.
Therefore, obtaining an easy-to-use framework for shot suggestions would be
a helpful tool for both amateurs and professionals. Although the research on
RL-based pool agents is limited, many approaches for the task exist [32,16,15].
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Fig. 1: pix2pockets. We introduce a new task for shot suggestions in pool games
using a single input image. First, we detect the table and estimate the position
of the balls. Then, they are fed into a pool environment, and a Reinforcement
Learning agent predicts the best available shot (i.e., cue angle and shot power).

Several papers have proposed to detect the balls and edges on the pool ta-
ble using a restricted setup [33,5,17,9]. All these approaches try to solve two
separate tasks; first locate the balls on the table and then suggest a good shot.
However, most of the approaches are limited to a single Bird’s Eye View (BEV)
of the table because their methods rely on a setup camera and traditional image
processing techniques. This limits the training of such a model to a constrained
situation, which is hard to obtain without any special equipment. Therefore, they
fail to utilize modern deep learning models, which have shown great success in
sports [28,39,4]. Consequently, to the best of our knowledge, an available dataset
containing pool table images from various angles has not yet been established,
which is needed for a model to work with images in the wild.

In this paper, we propose pix2pockets, a foundation for an RL-assisted pool
coach. Given a single image in the wild, we analyze the situation on the table
and suggest a good shot for pocketing the next ball. For the first task, we build
an image dataset containing different angles and views of the table, allowing a
trained model to analyze any user image. Our dataset contains 5748 manually
annotated instances, with object bounding boxes for all balls and white dots 2
of the table. For the second task, we establish a standardized RL environment
compatible with the widely used Gymnasium framework [3], which allows the
easy training of any RL agent and the use of custom reward functions.

Our experimental results show that our detection model obtains a AP50 of
91.2%. Using these detections, we build a method to find the accurate locations
of the balls and map them into our RL environment. We obtain a mean location
estimation error of 0.4 cm corresponding to only 7% of the a pool ball diameter.
Furthermore, we experiment with standard RL algorithms [27,18,8,19,11] on our
developed RL environment. Even though they succeed in easy situations where
only two pool balls are present, they fail to suggest a successful shot when all
balls are present. We also present a simple algorithmic baseline that achieves a
per-shot success rate of 94.7% and clears a full table in a single turn 30% of the

2 https://www.libertygames.co.uk /pool-diamond-system/
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time. We hope the release of the dataset and the environment will boost more
work in the community for the game of pool.

2 Related Work

Computer vision for sports. Object detection systems are widely used in

many sports such as football [28], basketball [39] and handball [4], for generat-
ing sports analytics [13], analyzing strategies [24], understanding broadcasts [10],
and forecasting future actions [7]. For the game of pool, there are several ap-
proaches to detect balls and edges on a table [5,17,33,9,26,38,12]. However, they

are limited to a single BEV of the table as they rely on a setup camera. This
setup is hard to use in practice with images from various angles and lighting con-
ditions. Moreover, these approaches use classic image processing based on thresh-
olding [38], Hough transformation [26,17], and morphological operators [17]. In-
stead, we are interested in detecting pool tables and balls on images in the wild
with diverse angles and lighting conditions.

Learning to play board games. In 1996, the chess match between Garry Kas-
parov and the IBM computer DeepBlue was a milestone. Even this brute-force
approach showed that artificial intelligence can catch up to human intelligence
and defeat intellectual champions. Nowadays, most approaches rely on powerful
RL models. One of the first examples is the 1992 IBM TDgammon [35], which
used TD-lambda for playing backgammon. Recently, AlphaGo [29] and Alp-
haZero [30] have become increasingly advanced, surpassing human performance.
Learning to play video games. Other RL approaches focus on video games
ranging from simple Atari games [20] like Pong or Space Invaders to complicated
modern games like Counter-Strike [22], Minecraft [1], and Starcraft II [37]. An
example of RL in video games is studied in [20], in which only the raw pixels
from seven classic Atari games are used as input to an RL agent. This study
shows that with most games, state-of-the-art methods could be implemented
to achieve performance better or comparable to an expert human player [20].
Other papers [22,31] build RL agents that perform well in FPS games. One uses
behavioral cloning from a large dataset consisting of Counter-Strike videos [22],
while the other uses a modified Q-learning algorithm named RETALIATE [31].
Learning to play pool. Pool also requires strategy and outcome predictions.
One attempt to create an agent for a pool environment is made in a series
of YouTube videos ®. However, this mainly showcases results, and the training
implementation is limited. Another example is a playable pool implementation
in pygame *. Other simulations in online games have the player compete against
an AI, which often uses a set of predefined strategies, vector calculations, or
search trees [16,32,15]. Instead, we implement a standardized RL environment
which handles a variety of predefined agents using the Gymnasium library [3].

3 https://github.com /packetsss,/youtube-projects /tree/main /pool-game
4 https://github.com/russs123/pool _tutorial
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(a) Dataset example images (b) Dataset statistics (c) Object examples

Fig.2: Our Dataset. (a) It contains 195 annotated images of tables captured
from various angles with diverse lighting conditions. (b) We annotate 5748 ob-
jects with accurate segmentation masks. The maximum number of objects in
the image varies from class to class. (¢) Bounding box annotated examples. Note
how sometimes the balls are not completely visible from the given view.

3 Dataset

We present our dataset collected to train object detection models in a pool
game. The images are obtained from various online videos from different 8-ball
championships. Most of these frames are taken from the Predator World 8-Ball
Championship °, as these are high-quality videos of many different angles filmed
using BEV cameras and camera jibs. This allows us to gather diverse images with
different views of the table. Example images are shown in Fig. 2a. We manually
annotate the bounding boxes of all balls (cue, black, striped, and solid) on every
image. To detect the table, we annotate the bounding boxes of white dots around
the table. We found that this is a better choice than annotating the whole surface
of the table, as the dots are located identically on all tables according to the
Diamond System? and therefore uniquely identify the boundaries of the table.
All annotations are obtained in Roboflow Annotate. Our dataset consists of two
sets. The main dataset consists of 195 images (5748 bounding box annotations)
used to train the detection model. The additional dataset contains 52 images
(1624 annotations) of pool situations, where multiple images show the same
table from different angles. There are 25 pool situations in total, which we use
to study the projection error from view to view (Sec. 5.1). Examples of the
annotated bounding boxes (balls and dots) are shown in Fig. 2c, while detailed
dataset statistics are shown in Fig. 2b. Note that not all images have the cue
ball, 8-ball or all dots, as they can be hidden behind the players in the images.

® https://www.youtube.com/@ProBilliard TV
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Image Iin

Output lout

Fig.3: Full pipeline. The input image [, is run through the Ball Location
Model to estimate the ball positions on the table, which is then handed to
the Shot Suggestion Model. First, we obtain the dot detections d and the ball
detections b on Ij,. We use d to find the table lines and thus estimate a mapping
H from I, to a template T. Then, we use H to estimate the center point p for
the balls b, resulting in the positions p for the environment. The Shot Suggestion
Model sends the state S € S to the agent, suggesting the A € A. During training,
the environment evaluates the action, and the agent receives a reward R € R.

4 Method

We propose pix2pockets, a method for generating shot suggestions given a single
input image [i,. The overall pipeline is depicted in Fig. 3. Our model can be split
into two components: the Ball Location Model, and the Shot Suggestion Model.

4.1 Ball Location Model

The Ball Location Model provides precise ball locations given I;,,. We use a pre-
defined template, T', that shows a BEV of a pool table. The template T" matches
the dimensions in an RL environment, and the goal is to map the ball centers
in I;, to T using an estimated homography matrix H. First, we use an object
detection model to obtain the ball and dot detections on the table. Then, we
perform a line estimation approach on the dots to ensure the table is rotated
correctly and estimate H. We also use H to estimate the ball centers. Finally,
we map the ball centers to 7', and use them at the Shot Suggestion Model.
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Dot detections. To locate the table in the image, we obtain a set of dot detec-
tions d. Pool tables follow the diamond system 2, which ensures that the dots
will be in a special format, allowing us to learn the dimensions of the real table.
Line estimation. We use a linear line interpolation from d, to identify the
four sides of the table, thereby dividing d into four subsets. We iteratively use
Ransac [6] to find the line that interpolates the most points. We remove the
inliers from each iteration and end up with the four lines (four table sides). To
ensure that the line estimation is correct, we find all the intersections between
them and make sure that only four intersection points are within the table.
Furthermore, we find the intersections of these lines and add them to the set
of points d. To estimate H, the order of the elements in d needs to match the
order in T'. This is achieved by sorting the four sets of points (one for each line)
by their mean (x,y) values and then sorting the individual points within each
set by z. After this, we check whether the first line contains 3 (short side) or
6 (long side) points since this indicates if we need to permute the ordering to
ensure that the narrow table side is not mapped to the long side and vice versa.
Homography. Given the template T and found dots d, we estimate a mapping
from I;,, to T with H. In theory, we only need 4 points to estimate H, but we
use all 22 available points to make the estimation more robust.

Ball detections. In parallel, we obtain a set of ball detections b from I;,. They
are represented as bounding boxes (z,y,w, h,c), where (z,y) is the upper-left
corner of the box, (w, h) is the width and height, and ¢ is the predicted label.
Approximate ball center points. To map the balls b to T', we determine a
single point p; for each b;. This point should be in the center of the bounding box
for BEV images, whereas for angled images, lie closer to the top of the ball. To
approximate p, we approximate the camera angle using H and map it linearly
between the center point and the topmost point of the bounding box.

Ball positions. To correctly position the balls inside the environment we use H
to map each p; to a point p; € T used as ball positions for the balls in Sec. 4.2.

4.2 Shot Suggestion Model

The Shot Suggestion Model provides shot suggestions based on the given ball po-
sitions. We utilize RL to achieve this. For the RL agent to give shot suggestions,
we create an environment in which it can gain experience.

Environment. The environment is built using the widely used Python module
Gymnasium [3]. Here, we can define the layout and rules for which the RL agent
can be trained. Our environment is created to be identical to a real pool table.
We ensure this by using the dimensions of all elements from the top-view images
from our dataset, such that the environment follows the actual pool table dimen-
sions. The same applies to the size of the pockets relative to the balls and their
locations. Due to the complexity of this task, we choose to simplify the physics
as much as possible. We assume that the cue ball is always hit in its center and
that every collision is perfectly elastic. We use the Python module Pymunk to
simulate the physics. Since the environment is fully observable, the state S € S
contains the whole observation. That is Sy = (x1,y1,¢1, --- %16, Y16, C16)¢, 1-€., the
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Table 1: Ball and table detection. The performance of the object detection
model before and after post-processing (before | after). The post-processing step
increases the precision by about 10%.

b|v Stripes Solids Cue Black Dots Average

Precision 84.0]97.8 90.0|95.3 86.4|95.0 85.7|100 83.5]/90.8 85.9|95.8
Recall 89.9189.9 89.0/89.0 95.0]95.0 94.7|94.7 91.6|90.8 92.0]91.9
F1 86.8193.7 89.5]192.0 90.5]|95.0 90.0|97.3 87.4|90.8 88.8]93.8
AP50 90.091.4 89.9]90.4 92.2]92.3 92.2|924 89.5|89.3 90.8|91.2
AP50:95 79.1]|80.4 80.7|80.9 83.6|84.0 849|854 51.0|51.4 759|764

position and class of all the balls at timestep ¢. The state space S contains all
possible pixel locations inside the table boundaries for all balls, with the condi-
tions that (a) the center of the ball cannot be closer to a cushion than its radius,
and (b) any two balls cannot be closer to each other than their radii combined.
To visualize and run the environment, we use the Python module Pygame.

RL agent. Given S, at timestep ¢, the agent suggests a single shot as an action
A;. The action space A = {«, p} where « is the direction and p is the power of
the shot. During training, A; is evaluated by R : S x A — R where R is the set
of possible rewards from the reward function R described in Sec. 5.2.

Output. The model output is an image I,,; showing the state S from the
environment with a depiction of the suggested action A.

5 Experiments

In this section, we present our experimental results. First we present experiments
for the Ball Location Model, and then for the Shot Suggestion Model.

5.1 Ball Location Model

We use a pre-trained YOLOv5 model [25], which we finetune to our dataset. We
split our dataset into 155 training, 20 validation, and 20 test images. The images
are resized to 640 x 640, and we use a batch size of 20, a constant learning rate
of 0.01, and 2000 epochs, as fewer epochs lead to a model that can’t distinguish
the cue from the 8-ball. To evaluate the detection model, we use precision, recall,
Fl-score, and the average precision with an IoU-threshold of 50 (AP50).

Detection Results. The object detection results are shown in Tab. 1. We
observe qualitatively that many of these errors are caused by detections that are
not possible (e.g., detecting more than 18 dots or more than one cue). In other
cases, balls are detected as multiple classes, resulting in a very high overlap of
several objects. Since we know this can never happen, we constrain the model
by post-processing the detections. We establish a post-processing procedure b —
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Fig.4: (a) Training size. The AP50 of models with different training set sizes,
showing diminishing gains after 80 images. (b) Shot Accuracy. To determine
the shot precision, we test the performance for different o values. In the 1-Ball
environment, a precision of 0.25 degrees is enough to pocket the ball. Ball-ball
interaction requires larger precision (0.01 degrees) when using additional balls.

b’, that enhances the detection results. The post-processing first runs a class
agnostic non-maximum-suppression (NMS) to eliminate detections with high
overlap. Then, the highest confidence detections are kept while respecting the
total number of class instances in an image (i.e., 18 balls). We see that the use
of post-processing generally improves performance for all metrics. Due to the
removal of detections, the post-processing sometimes removes correct but low-
confidence detections, resulting in a lower recall, but with a precision increase
of 10 percentage points, we obtain a more robust model.

Hough Circles. We compare our model with a traditional image-processing
method (Hough Circles). We first apply an adaptive threshold on the image and
then use the Hough Circles approach with dp = 1, minDist = 10, param1 = 300,
param?2 = 0.7, maxRadius = 30. The minRadius is set to 0 for dot detections
and 15 for balls. After detecting the circles, we perform an NMS using the radius
as a confidence score. The Hough Circles achieve an AP50:95 of 0.26 without
dots and 0.21 with dots, while our model, when disregarding classes, achieves
0.82 without dots and 0.67 with dots. In addition to being a better detector, our
model can also classify them, which the Hough Circles is not able to.

Training size. To test the training performance using the dataset, we perform
ablation on the size of the training set by training several YOLOv5 models with
varying training set sizes, shown in Fig. 4a. We observe that AP50 is very low
(<50%) when training with less than 50 images. Using 80 images yields much
better results close to our full model, which yields an AP50 of 91%.

Table size. The further away one is from the table, the harder it is to distinguish
the ball classes. We evaluate this by calculating the AP50 of each test image as
a function of the table area in the image. The AP50 is above 95% when the table
covers at least 40% of the image. When the table occupies a smaller area such
that objects occupy less than 8x8 pixels, recognizing their categories becomes
challenging, and AP50 drops significantly to about 50% in these few cases.



pix2pockets 9

Best case. Mean table shift: 0.22 cm. ‘Worst case. Mean table shift: 0.76 cm.

Fig.5: Projection error. To estimate the projection error, the front-view and
45-view projections are compared to the top-view ground truth. The projection
result is shown on the top-view image for accuracy assessment. The blue lines
indicate the distance from the estimated center point p to the ground truth. The
mean shift is compared to the table length in 7', and scaled to a regular 9ft table.

Projection Error. To evaluate H, we establish a controlled experiment, where
we use two different frames for the same pool situation: one BEV and another
view using the additional dataset of 25 sets of situations from multiple angles.
Here, we treat the BEV image as ground truth, as the template transformation is
trivial. Then, we compare the results of the ball locations from the two estimated
homographies, and the shift error is calculated as the distance from the ball
centers using the BEV homography to the centers using the other homography.
We obtain a mean error of 0.4 cm (good and bad examples in Fig. 5). We observe
that the error is relatively small compared to the size of a real ball (5.7 cm).

5.2 Shot Suggestion Model

In this section, we discuss the specific choices taken in building the environment
and then we present the results and evaluations of the trained RL models.

Environment settings. We set the screen size to 410 and 735 pixels. These
lengths consist of the actual table itself, but also the width of the edges. The
ball’s radius is set to 7 pixels, and the pocket’s radius to 15 pixels. Deducting
the sides of the table, we have a table state space with |S| = 337 x 662 valid
ball positions. When training, we generate states at random so that there is no
overlap with neither another ball nor a cushion. As precision lower than 0.01
degrees has proven to result in lower performance, we use a multidiscrete action
space with 36.000 equidistant angles and 30 values for the shot power matching
the power of a shot in a real tournament, leading to an action space of size
|A| = |a| x |p| = 36000 x 30. The target balls will be denoted "blue" balls.
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State TD3 Masked PPO Oracle
SeS Aec A A€ App A€ Aupim

2 Balls

All Balls

Fig. 6: Example of shot suggestions. The first column shows two initial states.
The second, third, and fourth columns show the action predictions of TD3,
Masked PPO, and the Oracle, respectively. Each action image is highlighted,
indicating whether the shot was successful (green) or not (red).

Environments. We experiment with 3 environments: 1-ball, 2-ball, and All-
ball. In 1-ball, only the cue ball is present, and the goal is to pocket it. In 2-ball,
the cue and 8-ball are present, and the goal is to hit the cue ball and pocket the
8-ball. All-ball simulates a full game, and the goal is to first pocket all blue balls,
and then the 8-ball, without mistakes. In all cases, the environment is reset if a
shot is unsuccessful, whereas a new shot is awarded if a ball is pocketed.

Baseline models. We use standard RL algorithms provided in the SB3 li-
brary [23]. These include the Proximal Policy Optimization (PPO) [27], the Deep
Deterministic Policy Gradient (DDPG) [18], the Twin Delayed DDPG (TD3) [g],
the Advantage Actor Critic (A2C) [19], and the Soft Actor-Critic (SAC) [11]. In
addition, we use Masked PPO [14], which masks out invalid actions from PPO.

Reward function. We reward the agent for winning the game by +100 and
penalize it for losing it by -100. The agent must pocket all blue balls and then
the 8-ball to win. To lose, the agent must pocket the cue ball or the 8-ball when
any blue balls remain. To incentivize hitting the blue balls, the agent gets +10
for each blue ball hit and +50 for each blue ball pocketed. If a blue ball is hit, it
gets a reward depending on the minimum angle between the hit balls’ velocity
and the pockets as described by r(v) = 1000/(v 4 10) — 50, where v is the angle
mentioned above. If the agent doesn’t hit anything, it is penalized depending on
the distance to the closest blue ball when all balls lie still again, as described
by 7(d) = —50d/D, where d is the distance, and D is the length of the diagonal
of the table. If the agent pockets the cue ball, it is penalized by -80. Lastly, the
reward is clipped to to the interval [—210, 210] and normalized to [—1,1].

Hitpoints. We introduce a calculation of all possible directions for a successful
shot that pockets a target ball. These directions are indicated by the point
the cue ball needs to hit to deliver an impulse to the given ball in the correct
direction. We refer to these points as hitpoints H P. Hitpoints can be used for
action masking. By limiting the agent to shoot in directions that lead to correctly
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Fig. 7: Mlirror table. To include kick and bank shots, we establish an approach
to mirror the balls and pockets to a separate space on each table side. Aiming
for a ball or pocket in the mirrored space M is equivalent to hitting a cushion
and then a ball on the real table. The cyan points indicate the aiming points.

pocketed balls, we can significantly reduce the action space from the original
|A| = 36000 x 30 to the subspace |Agyp| = |HP| x 30.

Oracle. We propose our Oracle model O to quantize the value of the hitpoints
and determine the best option by two factors. First, a change in direction due
to an angled collision makes a shot harder, and thus, we consider the cosine
similarity of the proposed direction vector for the cue ball and the ball to hit.
Second, we use the target window (the angle from the ball to the two sides of
the pocket hole) as this determines the precision needed to fulfill the shot. The
Oracle can suggest the best shot directly without using RL or quantize the shots
for the reward function to advance training further.

Introduce Mirror table. While direct shots are typically easier, kick or bank
shots (i.e., hitting the cushions during the shot) can offer better options. To
include these options, we expand the hitpoint space Sy p by introducing mirrored
table versions M on each side (Fig. 7). By mirroring the table, the cue ball
direction can be pointed towards a ball in M for kick shots, resulting in hitting
the cushion and then going to the desired ball in S. Similarly, bank shots can be
simulated by aiming at balls pocketing in M. This expands the hitpoint set and
improves the chances of finding a good shot. We also apply a penalty multiplier
(0.33) for each cushion hit, as direct shots are easier to perform in reality.
Results. We train each baseline model at each environment for 500.000 timesteps
using three-layer linear policy networks. We add action noise for algorithms with
continuous action space (TD3, SAC, and DDPG) to help with exploration. All
other hyperparameters are the default ones from SB3. In Tab. 2, we list the
completion percentages for every model in each environment. A large gap be-
tween the 1-ball and the 2-ball environment indicates a significant difficulty spike
between the two. No standard RL model manages to complete the all-ball envi-



12 J. Schigtt et al.

Table 2: Success-rate using various RL algorithms. We train all baselines
for one shot in the three environments, with little success in the latter two.

Env Random PPO TD3 A2C DDPG SAC
1-ball 23.6% 84.6% 97.4% 35.0% 99.8% 88.6%
2-ball 0.90% 1.10% 6.30% 0.00% 5.50% 9.90%
all-ball 4.30% 12.8% 7.60% 10.6% 6.40% 5.90%

Table 3: Success-rate using hitpoints. Using the same environments, we use
hitpoints (direct | direct,mirror) as action masks. We also test stages of using the
oracle with randomness or evaluated maxima. In addition, we test the completion
of a full turn (all blue balls and then the black ball).

Env PPOmask PPOmask(pmax) O(arand, prand) O(@rand, Pmax) O(Qbest, Pmax)
1-ball 100% | 100% 100% | 100% 84.3% | 86.2% 100% | 100% 100% | 100%
2-ball 63.2% | 68.5% 66.4% | 67.5% 65.9% | 34.4% 88.5% | 59.9% 95.2% | 98.7%
all-ball 49.7% | 60.7% 53.4% | 57.1% 68.7% | 37.1% 84.6% | 57.3% 90.2% | 94.7%

Full Turn  0.00% | 0.00%  0.00% | 0.00%  0.00% | 0.00% 1.50% | 0.30%  13.8% | 30.0%

ronment, although they pocket at least one ball 4-13% of the time. Masked PPO
outperforms the other baselines, but only Oracle completes the all-ball environ-
ment with a 30% success rate. As a reference, a professional 8-ball player can
“pbreak and run” 39.2% of the time [2]. In Fig. 6, we observe that Masked PPO
and Oracle succeed in contrast to TD3. This may be due to the large action
space lowered for Masked PPO and completely removed for Oracle. The simple
reward system may also be a reason for the low performance of the RL agents.
Ball shift effect. To measure the impact of the projection error on a good
shot, we set up a 2-ball environment and make the Oracle find a shot. Then, we
shift the target ball some distance in a random direction and let the shot play
out. The distances shifted are sampled uniformly either from the mean shifts
found in Sec.5.1 (shift-1) or a fixed distance of 2.5 cm (shift-2). We find that
the Oracle using direct hitpoints drops from 97.06% success to 77.88% when the
ball has been shifted by shift-1. However, when including the mirrored hitpoints,
the drop is from 98.46% to 84.52%. For shift 2, the new percentages are 31.38%
and 33.78%, respectively. This shows that the small projection error of our Ball
Location Model does not change the results drastically, but a larger one will.
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6 Conclusion

We presented a foundation for an RL-assisted Pool Coach named pix2pockets.
Given an image, the model can suggest a shot by predicting the best direction and
power. We built a dataset to enable the training of a pool-ball detector such that
it can detect balls in any user image captured in the wild. We created simplified
and open-source RL environments that provide standard benchmarks for training
any RL algorithm. We show that pocketing the cue ball directly is easy, but
pocketing all balls without making a foul move is much harder to accomplish.
Our work marks a new direction for systematically benchmarking algorithms to
solve the game of pool and assist in training amateur and professional players.
Acknowledgements. D. Papadopoulos was supported by the DFF Sapere Aude
Starting Grant "ACHILLES".
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